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CALCULATION OF ELASTIC-PLASTIC FLOW 

Mark L.   Wilkins 

Lawrence Radiation Laboratory,   University of California 

Livermore,   California 

April  19,   1963 

INTRODUCTION 

The first requirement in the calculation of elastic-plastic flow is a 

formulation of the equation of state.    The equation of state must describe 

elastic,   elastic-plastic,  and hydrodynamic flow.     The appropriate yield 

criteria must be included in the latter two regimes.    The literature includes 

many complicated forms of equations of state,   some of which have been 

developed to aid the mathematics in the analytic solution of the equations of 

motion.    However,   since numerical techniques will be considered here,  the 

equations of motion are completely independent of any rheological equation of 

state and any form may be used.    The object of the equation of state will be 

to provide a theoretical description applicable to a wide class of practical 

problems,   but using simple idealizations of the outstanding features of the 

real phenomenon. 

The problems of greatest present interest pertain to metal plasticity, 

but detailed description of rate-dependent processes,   for example,   are still 

not well enough defined experimentally.     Therefore,   the plastic  state will be 

described by continuously adjusting the stresses  such that the   yield   strength 

of the material is not exceeded.    More sophisticated descriptions may be 

included as they seem indicated by experiment. 

This article is arranged in three parts:    Part I - Equation of State, 

Part II - One-Dimensional Elastic-Plastic Flow,   and Part III - Two- 

Dimensional Elastic-Plastic Flow. 
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PART I.     EQUATIONS OF STATE 

A.     Elastic Region 

"We are only considering media which have the same material properties 

in all directions (isotropic media). 

In x, y,   z coordinates the state of stress in a continuous media is 

defined at a given point by six stress components,  o^.,  <r   ,  o^,  T^,   T ^ 

and T       (Ref.   1,  p.   14)-     It is always possible to choose coordinate axes such 
xy 

that the shear stresses at a given point are zero i. e. ,  such that T      = T^ 

= T      =0 (Ref.   2, p.   215).    Any three orthogonal axes such that the above 
xy 

condition results are called principal axes for the point considered.    The 

stresses in the directions of the principal axes on surfaces normal to these 

axes are called principal stresses,  denoted by <r ^ ,  a^,  and a^. 

A perfectly elastic material is characterized by a linear correspondence 

between stress and strain.     Hooke's law is used to describe the stress at a 

point resulting from a strain at this point.     The strain itself results from a 

force displacing particles in the media.     Hooke's law in terms of an 

incremental strain resulting in an incremental stress may be written as: 

°i =   v+ 2}X*\' 

V  ,   _    • 

Here X and (JL are the Lame constants,  and Ij ,  k^,  and k^ are the strain 

rates in the direction given by the subscripts; V = volume. 

The dot means a time derivative along a particle path.     It must be noted 

that the time derivative provides a desired ordered sequence for the incre- 

mental stress-strain relationship,  but this does not mean that a rate- 
3 

dependent stress-strain relationship has been introduced.      Hooke's law used 

in this way gives natural strain,  which means that the strain of an element is 

referred to the current configuration instead of the original configuration. 

The stress behavior    of a material can be thought of as being composed 

of a stress associated with a uniform hydrostatic pressure (all three normal 

stresses equal) plus a stress associated with the resistance of the material 

to shear distortion.     In describing yielding and plastic flow,  we will want to 
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limit only the stress contributions that are due to shear distortions.     There- 

fore,  we will decompose each of the stresses cr, ,  <r   ,  and cr„ into a hydro- 

static component P and a deviator component ss  where -P is the mean of 

three stresses:    -P = (1/3)- (<r   + cr    -i- cr  )„ 

cr~ - P + s also tr, = - P + s, (2) 

c-3 = - P + s3 

The usual notation is followed here such that stresses are >0 in tension and 

< 0 in compression,  which is just the opposite for pressure; hence the 

negative sign in front of the pressure.     We will define the mean normal strain 

as: 

9 = I (61 + 62 + €3} alS° 9=I^l + ^2 + S)- (3) 

The normal components of the strain deviators are defined as: 

81  =el   "e 

9    = e    - 9 also 90 = e0  - 9 (4) 

93^3-e 

From the equation of continuity we have: 

4l+i2 + i3=V° (5) 

It follows that: 

ei = el 
- 9 

92 = h - 9 

63 = i3 
- e. 

and 

h -IX 9 - 3   V 

Using the above definitions we may now write Hooke's law [Eq„   (1)]   as: 

Sl  = 2^61   " 3 V 

h2 = 2^2 "TV 

k3 = 2tl(s -iv) 
(6) 
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Also from equations 5 and 6,  it follows that: 

S] + s2 + s3 = 0 (7) 

and 

S] + s2 + s3 = 0 (8) 

which says that the distortion components of the stresses do not contribute to 

the average pressure. 

B.    Plastic Flow Region 

The yield condition of R. Von Mises is used to describe the elastic 

limit (see Ref.   4 for an English translation of the Von Mises paper).     When 

the principal stresses are known,  the yield condition can be written as: 

(«Tj   - o-2)2 + (o-2 - <r3)2 + (cr3 - o-j)2 = 2(Y°)2 (9) 

where Y    is the yield strength in simple tension. 

The left side of this  expression is proportional to the elastic energy of 

distortion per unit volume or the energy required to change shape as opposed 

to the energy that causes a volume change (Ref.   5,  p.   210).     The expression 

states,  therefore,  that plastic flow begins when the elastic distortion energy 

reaches a limiting value [(Y   )  /6u]   and that this energy remains constant 

during the plastic flow.     Thus,  by the term "elastic-plastic" is meant the 

state whereby the distortion (change in shape) component of the strained 

material has been loaded,  following Hooke's law,  up to a state where the 

material can no longer store elastic energy.     All subsequent distortion will 

produce plastic flow and plastic work will be done.     The left side of Eq.   (9) 

can also be interpreted in terms  of shear strength.     There are several ways 

of viewing Eq.   (9)s  but the point here is that at the elastic limit the left side 

is  equal to a constant.     We have chosen to interpret the constant in terms of 

the yield strength in simple tension Y   .     If the tension is applied in the CTj 

direction and the lateral stresses <r    and cr    are zero,  then Eq.   (9) gives 
0 cr    = Y   .     The simple tension implies two-dimensional flow since in order 

for the lateral stresses to be zero there must be strains in the lateral 

directions.     In fact the ratio e?A,  for this case is Poisson's  ratio,  also,  it 

is noted that Eq„   (9) implies that the yield strength in tension is the same as 

the yield strength in compression (absence of Bauschinger effect). 
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In or.,  <r_,  cr, space,  Eq.   (9) describes the surface of a straight 

circular cylinder.     The axis of the cylinder is equally inclined to the cr, ,  cr~ , 

<r, system of coordinates as shown in Fig.   la.     The radius of the cylinder is 

j2/3 Y  .     We are going to use the principal stress deviators such that 

s.+ s~ + s, = 0 [see Eq.   (8)] .     This is the equation of a plane through the 

origin of the axes of the principal stresses.     The intersection of this plane 

with the cylinder of Eq.   (9) results in a circle (see Fig.   la).    If the stress 

deviators s. ,  s~,  s„ give a point inside the circle,  the material is within the 

elastic limit. 

When the material is loaded beyond the yield strength and subsequently 

unloaded,  only the elastic distortion energy is recovered.     The work done 

against the material while in the plastic state is not recovered.    Another way 

of stating this is that the loading and unloading paths are not the same when 

the material has been loaded beyond the elastic limit (in Fig.   2a   the loading 

path is OAB, the unloading path is BC).     It has been demonstrated by D.   C. 

Drucker    that:    The work done on the material during a loading and unloading 

cycle must be positive or zero; zero only when purely elastic changes take 

place.     Furthermore,  the plastic strain increment must be normal to the 

yield surface that separates the elastic and the elastic-plastic states.     We 

will describe plastic flow by maintaining the stress deviators (s. ,   s_,  s~) at 

the elastic limit.    In Fig.   lb the stresses are shown at state n and after an 

incremental strain we will consider that the stresses have changed to state 

n + 1.    However,   state n +  1 is outside the yield circle and our assumption is 

that this state can not be reached.    Instead, we will consider that the 

material flows plastically,  but the stresses remain at the elastic limit on the 

yield circle.     The plastic component of strain is perpendicular to the yield 

curve and it is the stress associated with this component of strain that we 

want to limit.     Therefore, the new stress state, instead of being n +  1, is the 

point that is  reached by a vector from n + 1 and perpendicular to the yield 

circle.     The one-dimensional analogy is seen in Fig.   2b where the stress, 

-s. , has a maximum value for all strains beyond the elastic limit point A. 

Thus,  to summarize the yield assumption: 

(sj  - s2)2 + (s2 - s3)2 + (s3 - Sj)2 < 2(Y°)2 (10) 

sj + s2 + s3 = 0 
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Y/ELD CIRCLE 

«««S0Gm 

PLANE: S, +S2+S3=0 

GLB-637-Hia 

(b) 

\^-PLANE'  S,   +S2 +S3=0 

<r2 

YIELD CIRCLE 

GLL-637-1666 

Fig.    1.     Von Mis es yield assumption. 



-7- UCRL-7322 

-s, 

fc3 
TENSION 

(a) 

COMPRESSION 
A B €2 = 0 

«3 = 0 

So   = S ■x = "go, 

SLOPE 
Sf+S$ + SS = r_ 2 (Y°) 0\2 

SLOPE   K = (X + -|-/i) 

*, =-P + S 

( Q J GLL-637-I667 

Fig.   2.     One-dimensional strain for a perfectly plastic material. 
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which can be written as: 

s] + 4 + 4 £2/3(YV (ID 

If an incremental change in the stresses in an element results in a 

violation of the inequality, then each of the principal stress deviators 

(s   ,  s   ,  s   ) must be adjusted such that Eq„   (11) is again satisfied.    Hooke's 

law is used to calculate the stress deviators [Eq.   (6)] .    If a point falls out- 

side the yield circle (Fig.   lb) it is brought back to the circle along the radius 

vector of the point and hence perpendicular to the yield circle.    This is 

accomplished by multiplying each of the stress deviators (Sj,  s^,  s^) by 

\lz/3 Y°   is2, + s2 + sZ.    By adjusting the stresses perpendicular to the yield 

circle,  only the plastic components of the stresses are affected.     The observed 

incompressibility of the plastic state is implicit in this procedure.    Note that 

there is always a background pressure stress present,  whether the material 

is in an elastic or an elastic-plastic state,  but it is independent of the plastic 

flow.     This is in agreement with the observed behavior of ductile metals. 

The above formulation corresponds to a perfectly plastic material,  i. e. , 

material that flows plastically under a constant stress without work-hardening 

(see Fig.   2).    For a work-hardening material the stress (-Sj) will increase 

monotonically with strain (ej for strains beyond point A instead of remaining 

constant as for the perfectly plastic material shown.     Work hardening can be 

introduced into the calculation by making the constant Y    in Eq.   (9) a function 

of the strain energy, for example.     Also,  when enough work has been done to 

melt the material,  the value of Y    can be set to zero.     In this way an all- 

hydrodynamic description will follow since the stress deviators will 

automatically be set to zero by the above procedure and the only remaining 

stress will be the pressure P.    Time-dependent yielding can be macroscopically 

represented by selecting a high yield constant Y    if the strain rates (cj ,  k^, 

e„) are above some prescribed value. 
3 ,       0 

In the negative pressure region,  the pressure is cut off at P =  - (1/3)Y 

consistent with a. simple tension test. 
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The complete equation of state is given by: 
r r. ,   f. 1 VI       .....       2,     2,     2   , 2 ,v0, 

sl = 2*Tl  "3vJ      (lll)    Sl + S2 + S3 -3(Y  } 
°-l = -P+Sl 

2      "   *   '     2 

o-    = _ p + s. 

0,2 

(i){ or    = - P + s        (iiK 'S2 = 2^2-iv]       (1V)    Sl + S2+S3 = ° 

S = 2|X[43 -il]   (v)   P=P<V) 

(vi)    Minimum P = - — Y 

(12) 

C.    Experimental Equation of State 

Consider a one-dimensional shock traversing a material such that there 

is a strain in the X direction and zero strains in the Y and Z directions. 

This is the geometry whereby Hugoniot equation-of-state data are obtained. 

A shock exists that takes the material through an elastic to an elastic-plastic 
7 state. 

For one-dimensional flow, the X,  Y,   Z coordinates are the principal 

directions,   so by Eqs.   (6) the three stress deviators s   ,  s   ,  s    are: 

'By =  Z^{°  "IV 

'Sz =  2^(°  "TV 

The total stress in the X direction is: 

P + s 

(13) 

cr (14) 
x x 

We will assume it is <r    that is obtained by Hugoniot measurements. 
x 

X-X - Hugoniot 

A - Hugoniot elastic limit 

T,   =   p/p0   =    l/V 

p0 = reference density 

p = actual density 

•n - i 

Fig.   3 
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For 1-D flow the equation of continuity gives k    = V/V.     The complete 

equation of state for one-dimensional geometry is described by: 

(i) 

(ii) 

o-    = - P + s 
X X 

s     = 2u 
x 

(iv)      s    + 2s     =0 x y 

s     = 2u 
y 

"v    1 
V " 3 

V 
V 

i 
1 

O
0|

i—
. 

(v) P(V) 

(vi)      Minimum P =  - -~- Y   . 

W     (.*+Z.*)<f(Y°) 0X2 

Up to the elastic limit, point A, we have: 

K- 

or 

V 

P = - K In V 

o-    =KlnV + ^ulnV 
x 3 

and      s    = 2u[V/V -(l/3)V/V] 

and      s     =(4/3)|i   In V = - 2s 
x y 

K + 3dm V. 

At point A: 

(4+ *-X - f(Y» 0,2 

or 

(24/9)(iJi   lnVA)2=|(Y°)2 

0 l I        ^H-v Y   = 2^ lln VA! = XT 
2H-(crx)A 

2|i 

-0 ., 

(15) 

(16) 

(17) 

This gives the maximum yield strength Y    if the Lame constants and the 

Hugoniot elastic limit are known. 

For points beyond A we have:   (s     + 2s   ) = -j (Y   ) 

which reduces to: 

8       =±|Y
0 

x 3 
[from (iv) Eq.   (15)] , (18) 

[if the material yields in tension,   s     >0,  in 
0 x 

compression,   s     < 0 (Y    is always >0)] 
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so the total stress resulting from a shock from <r    = 0 to a value above point 

A is: 

o-    = P(V) + 4 (Y°) 
x 5 

P(V) can be expressed conveniently as: 

P(TJ) = a(T] -  1) + b(ti -  l)2 + C(T! -  I)3. 

(19) 

(20) 

r0 
Here a, b,  and c are constants such that P(T)) + (2/3)Y    reproduces the 

Hugoniot for shocks above the elastic limit and P(T]) = -Kin V for pressures 

below the elastic limit. 

P(TI) 

-o\ 

Tl   -    1 

Fig.  4 

The result of using an equation of state as given by Eqs.   (15) is a loading 

path O,  A,   B (Fig.   4) and an unloading path B,   Cs   D.     Experiments  on metals 

in the low-pressure range (0 -*■ 50 kb) have demonstrated the difference 

between the hydrostatic   P(rj) and the Hugoniot (cr  ) curves.     At high pressures 

(hundreds of kilobars) for some metals the sound speed behind the shock has 

been measured to be of the order of 20% faster than that predicted by hydro- 

dynamic theory.     This gives reason to extend the low-pressure model up to 

high pressures.     Upon unloading from a high pressure,  the material unloads 

first elastically along BC; the slope of this path is characteristic of the 

elastic unloading velocity.     Consequently, the rarefaction travels faster than 

would be the case if the material unloaded entirely along the P(T]) path. 
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Experiments that have measured high sound speed behind shocks in metals 
Q 

have been performed in Russia,    Stanford Research Institute,  and at this 

Laboratory. 
9 

Using Hugoniot data of J.   M.   Walsh    and the elastic data of C   D. 

Lundergan,      the constants for Eqs.   (12) for aluminum are: 

Y° = 0.002976 mb (from Eq.   (17) with (cr  )A 

u = 0.248 mb = 0.0063 mb and VA = 0.994) 

P = 0.73 (T| -  1) +  1.72 {r\ -  l)2 + 0.40 (TJ -  I)3 

0
 - ■> 7 p     = 2.7. 

Figures 5 and 6 show the results of finite difference calculations of a 

flying aluminum plate striking a target plate.     The calculation shows that 

even though the yield strength Y    is small compared to the total stress or   , 

the effect on the 'wave is very pronounced. 

In principle,   calculations of this type in conjunction with experiments 

could be used in determining the properties of materials at high pressure 

based on the model described by Eqs.   (12).     Front-surface velocity measure- 

ments for various thicknesses of target plates could determine when the 

elastic wave overtakes the shock front (see Fig.   6) and this would establish 

the slope of BC in Fig.   4.     The magnitude of the step behind the shock in 

Fig.   6 would correspond to point C of Fig.   4. 

If the material behaves  entirely hydrodynamically,  then the step behind 

the shock front will not be present.    In Fig.   5 it is seen that the rarefaction 

due to the hydrodynamic unloading is proceeding much slower than the elastic 

unloading.     The hydrodynamic rarefaction however,  can be seen to be over- 

taking the shock front from the increase in the slant of the rear of the wave 

as time increases. 

It should be noted that to account for high sound speeds behind a shock 

it is only necessary to postulate that the material unloads first elastically 

and then plastically.     The result would still follow even though at high 

pressures the - a    curve merged with the P(T}) curve.     We have maintained 
0  x 

the values of Y    and u constant in these calculations since the details of the 

elastic unloading from high pressures are not known. 
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Fig.   5.     Stresses from a flying plate striking a target plate. 
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PART II.    ONE-DIMENSIONAL ELASTIC-PLASTIC FLOW 

For time-dependent flow in one space variable (r),  the principal 

equations for plane (d = 1),  cylindrical (d = 2),  and spherical (d = 3) 

geometries are: 

equation of motion 

o.-.    b-z z - ze 
£^ = ^+(d-i) 

S   = _(P + q) + s 
r ■ ^ 

2   = -(P+q) + s. 

(21) 

equation of continuity 

V 1 
V d r 

8(rd_1U) 
-1          dr 

energy equation 

E - V Sj   6j   +  (d - 
. 

2   2 

artificial viscosity (linear q) 

„0 p-°   /8u\    A 

* = C   V VaT   Ar 

+ (P + q) V = 0 

C    = constant 

(22) 

(23) 

(24) 

equation of state 

anisotropic 
stresses 

r si = 2^(M -\\t 

S2 = 2H
P2 " 3 V) 

^s3 = 2^3 "IV 

(25) 

NOTE:    Three stresses are identified here,  even though they are 
not all required,  so as to maintain an analogy with the 
two-dimensional calculations in Part III. 

r 

velocity 
strains 

9U 
dv 

U 
r 

k3 = k2iord 

6=0 for d = 2 

V 
6=0 for d =  1 
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hydrostatic pressure 

2   .     , ,»3 
P = a(n -  1) + b(ri -   1)^ + C(TI -  if + dnE 

_   1 _   P 

Von Mis es yield condition 

(■? + s2 + s2)n+1  - (2/3)(Y°)2  < 0 Y° = material strength 

Notation: 

r space coordinate 

U velocity in r direction 

2 ,   2. total stresses 
r        6 

s,,  s   ,  s, stress deviators 

e   ,  6   ,  e strains 

P hydrostatic pressure 

V relative volume 

p reference density 

p actual density 

E internal energy per original volume 

The dot over a parameter signifies a time derivative along the 

particle path. 

Application 

The finite difference equations for the above set of partial differential 

equations are given in Appendix A. 

Figure 5 shows a calculation in plane geometry (d =  1) of a flying plate 

coming from the left with a velocity U = 0.08 cm/^sec and striking a target at 

rest.     The materials are aluminum,  with the constants given in Part I.     At 

this impact velocity the elastic signal travels faster than the shock speed and 

the shock breaks into two components.     In Fig.   6 the same problem has been 

calculated with a higher impact velocity (0.2 cm/^sec).    In this case the shock 

speed is greater than the elastic signal speed and the shock front is the same 

as though the material were following an all hydrodynamic descriptions. 

However, it can be seen that the elastic relief wave that originated from the 

rear of the flying plate is overtaking the shock front. 
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Figure 7 shows the stress waves resulting from a 1-cm-radius 

spherical charge of high explosive (comp.   B) detonated at the center. The 

region from 1 cm to 5 cm is treated as an elastic material with P = K(r) -  1), 

K = 1.39 mb,  p     = 8.9,   |JL = 0.46 mb,  and Y    = oa     The stress waves are 

traveling at a velocity C = [(K + ^ |x)/p ]   '     cm/jxsec.    A second shock can be 
5 .      12 

seen that has originated from the high-explosive cavity. 

The second shock is a hydrodynamic effect and is not a result of the 

elastic property of the material.     The radial stress is seen to be followed by 

a tension tail of about -10 kb.     The tension is due entirely to the elastic 

property of the material.    If the material were described by hydrodynamics 

alone,  there would not be a tension portion behind the outward-travelling 

pressure stress wave. 
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Fig.   7.    Spherically diverging elastic waves. 
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PART III.    TWO-DIMENSIONAL ELASTIC-PLASTIC FLOW 

The equations of motion listed below are those used by the HEMP code, 

a program that solves the equations by finite difference techniques on the 

IBM 7030 electronic computer.     The derivation of the equations can be found 

in Ref.   13.     The problem is formulated in Lagrange coordinates with sliding 

interfaces allowed between an elastic and a hydrodynamic region or between 

two hydrodynamic regions, but not between two elastic regions.    However, 

an elastic region may slide along a fixed boundary.     The equation of state is 

used in the same manner as described in the preceeding sections.     There is, 

however,  the additional complication that the stress-strain relationship must 

be independent of a rigid motion and hence the incremental stress-strain 

relationship must be corrected for a rotation in the x-y coordinate system 

(Ref.   14).     When a zone is displaced from an initial state of stress,  there 

may be a rotation through an angle w as well as a distortion.     The rotation 

will not contribute to an increase in stress,  but the state of stress 

(s      ,  sn   ,  Tn   )   originally in the zone has been rotated through the angle w. 
yxx       yy        xy/ 
Since the equations of motion are referred to the fixed x-y coordinate system, 

the rotated stresses must be recalculated in terms of the coordinate system. 

The transformation equations (Ref.   5,  p.   110) result in a correction 6 that is 

added to the stresses.     The stresses can then be incremented by the strain 

that occurred between time tn and time t to give the stresses at time t 

The rotation angle is given by: 

Sin W " 2    [at' 9y/   At 

It is not practical to increment the stresses in the principal stress 

coordinate system because the principal stress directions are not unique and 

also there can be large changes in directions between two consecutive time 

steps.     Therefore, the operation of transforming to the principal stress 

coordinate system and then back to the x-y coordinate system every cycle 

would become complicated and inaccurate.     Even though the program to be 

described does make the transformation to the principal stress system to 

test for yielding, the directions of the principal stresses are not required in 

the calculations and the complications involving these directions is avoided. 

(The Von Mis es yield condition can be used without reference to the principal 

stresses (see Appendix B 7-b)s  however, the geometrical interpretation of the 

yielding is easier if the principal stress deviators are used instead of the 

stress deviators.) 
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A.     Basic Equations in the HEMP Code 

Equations of motion in x-y coordinates with cylindrical symmetry about 

the x-axis (it is desirable to have the problem formulated also in plane x-y 

coordinates; for this case the terms marked   | '  are set = 0): 

32           8T           T xx            xy +     xy 
3x           3y            y = p> 

3T           92           2       - 2Q xy ,      yy ,     yy       69 
9x          9y                 y 

2      = s        -  (P+ q), 
XX            XX 

2      = s        -  (P + q), 
yy      yy 

z6e = 8ee-(p + *)- 

py 

(26) 

Equation of continuity: 

V_ 9x+ 9i + X 
V      9x      9y     y 

Energy equation: 

E = - (P + q) V + V(sxxixx + syy iyy + seQ ^   + Txy ^ 

Artificial viscosity:    (quadratic "q") 

where 

q = C0
2 p°(V/V)2 A/V 

C    = constant 

A = zone area 

p    = reference density. 

(27) 

(28) 

(29) 

Equation of state: 
r 

stress 
components < 

xx 

yy 

'ee - ^^ee - 3 vy 

XX' 

yy 
(30) 

v 
T      = [i(k     ) + 6     , 

xy      ^   xy xy 
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where 

|JL = shear modulus 

6 = correction for rotation (see text). 

velocity 
strains 

9x  . 
£xx    3x eee 

x 
y 

yy      3y    xy      9x      9y 

Hydrostatic pressure 

P = a(r, -  1) + b(T| -  l)2 + C(T) -  l)3 + d^E, 

T|   = l/V =  p/p°. 

Von Mis es yield condition 

(af + s2 + s3
2)- (2/3)(Y°)2  < 0 

where 

Y    = material strength 

(s. ,   s?,  sj are the principal stress deviators. 

Notation: 

x,y space coordinates 

x velocity in x direction 

y velocity in y direction 

2     ,.£___,ZL„ total stresses 
xx     yy 

T 
xy 

S t S j S,~ -^ 
xx     yy     89 

shear stress 

stress deviators 

€      ,6      ,€.„,€ strains 
xx    yy    ÜÜ     xy 

P 

V 

E 

P 

hydrostatic pressure 

relative volume 

internal energy per original volume 

density 

(31) 

(32) 

(33) 

The dot over a parameter signifies a time derivative along the particle path. 
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B.    Finite Difference Scheme 

The following integral definitions of the partial derivatives are 

(see p.   327,  Ref.   15): 

used 

where 

\     F{n- i)dS 
9F JC 
3x lim 

A-0 
A 

f   F(n- j)dS 
9F JC 
3y lim 

A—0 
A 

C is the boundary of area A 

S   = = arc length 
A   . n - = normal vector 

A 

Yi 

t   = ta.ngent vector. 

(34) 

(35) 

x 

A       3x A   ,   9y A       8y A       9x4 
n=-är1 + ftt-J-äR1-äR"J 8n 8n as 8S 

(36) 

Applying the above to the quadrilateral 1,  2,   3S  4,  we have for a parameter 

F defined at the points  1,   2,   3S  and 4: 

YA 

A. = area of quadrilaterial 

jV(n •   i)dS = + jV §g dS 

= - [F23(y2 - y3
) + F34(y3 - ^+ F4i(y4 - ?i>+ Fi2(yi - yz\ 

(37) 

(38) 

where F^ = (F2 + F3)/2S  etc. 

S° If = " K [F23(y2 - y3> + F34(y3 " y4> + F41(y4 " *1> + F12(yl  " y2>] 

= + 2A [(F2 " F4><y3 - V  - {y2 - ^3 " Fl]]   ■ 

(39) 
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Similarly 

3F 
9y 2A (F2 - F4)(x3 - xj) - (x2 - x4)(F3 - Fj) (40) 

The quantities 3F/3X and 3F/3y are considered to be defined at the center of 

the quadrilateral. 

Using the above difference equations we can now write an expression 

for 3x/3x and 3y/3y at a given time and position.     The difference scheme 

to be used defines the velocities (x and y) at 1/2 time increments and the 

space quantities (x and y) at integral time increments. 

If we use the definitions: 

xn+l/2 =  1/2 ( 
n+1 n, 

x + x  ),   etc. 

and 
An+l/2=  l/2(An+l + An} 

where A    and A. - area of the quadrilateral at time t    and time t 

respectively, then the difference equations will give: 

+ ^-   exactly   —■        (continuity equation in plane x-y 
3x      3y geometry where A/A = V/V). 

(41) 

It is obviously very desirable that a difference scheme have this 

property since it leads to zero truncation error in the numerical integration 

of each of the terms in Eq.   (41). 

We will now consider the continuity equation inx, y coordinates with 

cylindrical symmetry about the x axis. 

3x  ,   3y 
3x      3y y      V 

(42) 

Here V is the volume swept out when the area A. is rotated about the x axis. 

V = y   A    + y, A }a.   a      'K b   b 

A    = area of Aa 
a 

A.,   = area of Ab 
b 

A = A    + A, a        b yk 

y, =]/3 ^z+ y3 
+ y4> 

yb = 1/3 (y2 + y4 + y,) 

ya   =  1/3 (y2 + y3 + y4) 

yb = l/3(y2 + y4 + y,) 

(43) 

4 3 

<a 
b__ 

1 2 

n 
axis of cylindrical symmetry 
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A very good approximation for the third term, y/y>  of Eq.   (42) is given 

by: 
An+l/2.      ,   An+l/2. 
A y    + A, 

y =     n+1/2 Ji+1/2 + An+l/2^i+l/2    ' 
^b (44) 

It is important to recognize that the difference equations for the terms 

in brackets in Eq.   (42) are the same as for the left side of Eq.   (41) i. e. , 

they are independent of the coordinate system.    Since there is essentially 

zero truncation error with the integration of these terms , it is possible to 

calculate V/V from the coordinates and express y/y as: 

y    v 
9i + 9i 
3x      9y 

(45) 

For the acceleration routines,  the given parameter F in Eqs.   (34) and 

(35) is defined at the center of a quadrilateral.     The area enclosed in the 

integration is the area I,  II,  III,  IV in the figure below. 

Ill 

IV,, 

O 

© 
II 

-► * 

The corresponding difference equations for the i and j components of 

acceleration become: 

(V(n •   h dS = -   [FQ(YII - ym) + F@(ym - y^) + F@(yiv - Yj) + F^ - yj] , 
(46) 

JF(n •   f) dS = +   [F(i)(xn - xm) + F0(xni - xIV) + F^x^ - Xj) + F@(X][ - xj\  , 
(47) 

The area I,  II,  III,  IV is considered to be the mean of the quadrilateral 

A<pj,  A^.,  Asy   and A-^y     As can be seen in , 

are weighted by the four corresponding densities. 

areas A^,  A^y  A^,   and A-^y     As can be seen in Appendix B,  the quadrilaterals 
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C.    Applications 

The complete set of difference equations, including sliding interfaces 

and boundary conditions,  is given in Appendix B.     In the following figures, 

applications of these equations to specific problems are shown.     The plots 

were made directly from the high-speed computer by a cathode ray tube and 

then photographed.     Zones are shaded with an intensity weighted by the rate 

of zone compression.    Hence, the shocks or detonation fronts are traced on 

the grid. 

Figure 8 shows the time sequence of events due to a charge of explosive 

detonated at constant volume against a plate of copper.     The horizontal line 

through the middle of the grid is an axis of cylindrical symmetry.     The 

equation of state for the copper was derived in the same manner as previously 

discussed for aluminum.     The yield strength used was Y    =  10 kb and shear 

modulus  |JL = 460 kb. 

Figure 9 shows the directions of the maximum principal stresses for 

the above problem.     The maximum principal stress with the sign convention 

being used is the tension component of the stresses.     Therefore,  the line 

segments point in a direction normal to the direction of an incident shock. 

By examining the plots,  the progress of rarefactions from the free surfaces 

can be followed since the lines point in the direction of tensions. 

Figure 10 shows the same problem,  but the copper is described by a 

hydrodynamic equation of state with no strength of materials.     It can be seen 

that the crater is much deeper than in the preceding problem.     The crater lip 

is seen to increase with time.     With a hydrodynamic description there are no 

restoring forces if the material deforms at constant volume.     The elastic- 

plastic description gives  rise to restoring forces that resist a change in shape 

even though the volume remains constant,  and hence no lip is formed for the 

problem shown in Fig.   8.    A lip will form, however,  for calculations made 

with yield strengths of 1 to 2 kilobars. 

Figures  11 and 12 show the time sequence of stresses in a copper plate 

resulting from the interactions of detonation fronts in a high explosive (PBX 

9404).     The calculation was made in plane geometry and the detonation centers 

are lines perpendicular to the page on the right- and left-hand lower corners. 

The left- and right-hand boundaries are planes of symmetry.     The copper has 

a yield strength Y    =  10 kb in this calculation. 
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Fig.   8.     High-explosive burned at constant volume in contact with a 
copper plate. 
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Fig.   9.    Direction of the maximum principal stress (see Fig.   8). 
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Fig.    10.     Initial geometry as in Fig.   8,  but with no strength of material 
in the copper. 
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Fie.    12.     Continued from Fig.    11. 
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The interaction of the two detonation fronts results in the trailing 

shocks with high localized pressures in the region of the cusp.     The 

detonation front can be seen to transmit a shock into the copper and reflect a 

shock into the high explosive.     The trailing shocks induce a circular shock 

that sweeps from the left and right of the line of interaction.     This shock can 

be seen to punch out the center of the copper.    In the last frames the reflection 

of the trailing shock from the fixed boundaries can be seen.     The dark shading 

where the reflected shock from the copper meets the trailing shocks indicate 

a high-pressure region. 

Figure 13 shows the directions of the maximum principal stresses in 

the copper for the above problem.     The expanding circular shock due to the 

trailing shocks can be seen to be progressing through the already shocked 

copper. 

Figure 14 shows a comparison of the above problem with a calculation 

made with no material strength in the copper.     This calculation indicates a 

low density region along the front surface as well as in the large circular 

section in the middle. 

Figure 15 shows the explosion of an iron cylinder that had a charge of 

PBX 9404 inside that was detonated from the right-hand surface.     On the left, 

the iron cylinder motion has been calculated with no strength of material and 

on the right,  the motion was calculated with a yield strength Y    =10 kb. 

Comparing the two calculations,  it can be seen that the elastic-plastic version 

shows the thickness of the iron to be slightly dilated.     Also,  the end of the 

cylinder has maintained more of its original shape compared to the hydro- 

dynamic version. 
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Fig.   14.    Comparison at 6 |as with and without material strength. 
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Fig.   15.    High-explosive detonated inside of an iron cylinder,    (left:   Iron 
treated as a hydrodynamic material; right:    Iron treated as an elastic-plastic 
material with a yield strength   Y    = 0.010 mb). 
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APPENDIX A 

FINITE DIFFERENCE EQUATIONS FOR THE EQUATIONS 

GIVEN IN PART II 

The material is divided into mass intervals: 

id 

mj+l/2=J70 

0   /(r°+)
d- (r°>\ plane: d=l 

_   I     J"1"1 ^Jy     I cylinderical:     d = 2 
/ spherical: d = 3 

j = 1,2,. . .N (see Ref.   16). 

I.     Equation of motion 

(a)       un+l/2 = Un-l/2 + ^ 
4> 

n 
r/J + 1/2 1/2 

+ Atn[ß*j (d -  1) 

where: 

m 
r/ j+l/2 

n 

(P" + q-
l/2) + s-    j+l/2 

n\ f     iT-P-  ,     n-l/2, nl 
ej j+l/2 =    [-(P    + <* ) + S2J j+l/2 

<t> 
n      1 

pj+l/2   V   yn 

n n, 
r.,,   - r. 
_J+i L 

j+l/2 

+ Pj-l/2 

n       n 
'r. -  r.   , 

J        J-l 
rn 

1/2 

n      1 (Zr)j+l/2 "  ^eVl/2 
1 / n      ,     n -rr(r.,.  + r. 
2 V J+1 J 

'V 
n\ 

/j+l/2 

CZr)j"- 1/2 -   (2e)"-1/2 
1   /n  .     n  ^ 
2(rj   +rj-l 

'V 
n> 

.Vj-1/2 

At an outside regional boundary J 
n n 

<t> 
n        0 / rJ   ~ rJ - i \   1 

•j-1/2 

n 

VJ-./Z 

(Sr)j-l/2 -  (Ze)"-l/2 
1 /-n  ,     . 
2 (rJ + T" 

,n\ 

V
P
O/J-I/2 
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At an inside regional boundary J 

, n _ 1    0 .    _ . 
^J   " 2pJ+l/2     "3T 

n nv 
rJ+l  " rJ 

outside 
boundary 

V 

n 

J+l/2 

(Zr)j+l/2 "   Fe) J+l/2 

i/rn+ rn 
2      J J+l 

0_| .     inside 
'p0/ J+l/2       boundary 

increasing 
j 

For a free surface at j = J, the stresses are set to zero at J + l/2 for an 

outside free surface or J -  l/2 for an inside free surface.     The zones 

adjacent to an elastic region are considered to be hydrodynamic. 

(b) 
rn+l  = rn + un+l/2Atn+l/2 

j J J 

2.     Equation of continuity 

W        <i/2 = ^l/2 + Atn+l/2/// 
Vm/j+l/2 

- u: 

n+l/2  /n+l/2\ d-1 
j+l j+l 

(b) 
n+1 

Vl/2 V 
n+1 

here    r 

n+ 1/2 /n+ l/2y- 1 +   £n+l/2^| * 

n+l/2 =l/rn+l  + 

^ j+l/2 

+ l/2 
j+l 

,Xj+l/2 

2 lj + 1 
n    ' 

* _ (Atn+1/V 
12 

etc. 

feiiA)3-(uri/2)3 

3.     Anisotropie stresses 

r 

velocity 
strains    / 

V 

TTn+l/2      TTn+l/2 
.  \n+l/2 _ Uj+1       " Uj 
€1 j+l/2 n+l/2      7+T72 

' j+l j 

„n+l/2      nn+l/2 

62Jj+l/2       rn+T7S+ rh+l/2 
' j+l j 

e.= 0   for    d =  1 

Correction term for d = 3 only 



-A-3- UCRL-7322 

r, 

l)JtlA
=(sl)?+l/2 + 2»l[(il) 

,n+l/2 Ain+l/2 
6lj+l/2At 

1 /V
n+1 - vn) 

3v vn+1/2 yj+1/2 

stress       /     \    , i 
deviators <\s2K+1/2 = K&i/z + 2» 

i /v 
3v vn+1/2 yj+1/2j 

\> 

n+1 
3JJ+1/2 

+   s. 1 j+l/2T   S2 Jj+l/2 

4.    Artificial viscosity 

n+l/2 _ „0 
Lj+l/2 C    a p„ Ti 

n+l/2 
0 V 1/2 

TTn+l/2      TTn+l/2 U. , ,        - U. ,      ,   . T     -r     TTn+l/2    _TTn+l/2 calculate only if:    U.     '     < U. 

C    = constant =» l/2 

a = local sound speed 

5.     Energy equation 

and:   ^+
+//2 - V^+]/2j <0 

dE = dE„. + dE. + dE_ 

dE H =   -  (P + q)  dV 

dE    = V   SjljAt 

dE2 = V   s2e2At (d-1) 

,« /Tr\n+1 /„\n .„.n+l/2/    \ n+l/2/.   \n+l/2   ..n+l/2 
<a) (Eljj+l/2 = (El)j+l/2 + Vj+l/2 (Sljj+.l/2 \6lJj+l/2  At 

/^\ Ar\n+1 L\n ,   , ,       .,„n+l/2/    \ n+l/2 /.   \n+l/2 (b) (E2Jj+l/2 =  (E2)j+l/2 + {d "  1)Vj-H/2 (S2Jj+l/2 ^jj+l/2 
,/2Atn+l/2 

<c> H?i/2i 
E n . Y^h±^L + qn+l/2] . [yn+1   _ ynj + ^ + ^ 

1  + Ü2Ö..  [ vn+1 - V »] j+l/2 
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6.    Hydrostatic pressure 
„n+1 A/n+l   \   ,   -o/n+1   N-n+1 
Pj+l/2 = A\T1j+l/2j + B(Vl/2j Ej+l/2 

7.     Von Mises yield condition 

2   .     2   ,     2\n+l 
sl + S2 + S3 

-2/3(Y°)2 = Kn+1 

ji+1 If K"' J   < 0,  the material element is within the elastic limit. 

If Kn+1 >0, the material element is beyond the elastic limit. 
r 

Set: / 

8.     Stability 

n+1 

2 x    2  ,     2 
+ S2 + S3 

n+1 
s2       = S2 

/2/3 
fi 

2,2,2 + s2+ s3 

V 

At 

n+1 
n+3/2 _ I  rj+l 

n+1 

P7V 
H;itn«/2>|...)At»

tl/! 

min.   over j 

a = sound speed 

b = (2C°)^; b = 0 if ^>0 

Use:Atn+3/2 = (l.l)Atn+l/2 

Atn+1=l(Atn+3/2 + Atn+1/2' 

This is a composite of the stability criteria given in the Von Neumann and 

Richtmyer paper that introduced the "q" method for calculating shocks 

(J.   Appl.   Phys.   2J_,  March 1950). 
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APPENDIX B 

FINITE DIFFERENCE EQUATIONS FOR THE EQUATIONS 

GIVEN IN PART HI 

1.    Mass zoning for cylindrical symmetry about the x-axis. 

The material is divided into quadrilaterals with a grid j-k that moves 

with the material.    In the figure,  the centers and the vertices of the quadri- 

(D = j + j. 
k + l 

<2>SJ-I- 
k + i 

(3> = j - 2s 
k-I 

®=3+^, *-i 

i 4 L      ^ 
\a 

© 
,b   \ 

1 2 
O ® 

3- 1 j j+l 

k+1 

k-1 

laterals will be denoted as follows: t 

1 =jsk 
Y 

2 =j + l,k 

3 = j + l,k + 1 

4 =jsk+ 1 

The mass at time zero associated with each quadrilateral is obtained by 

the product of the initial density and the volume swept out by the quadrilateral 

rotated about the x-axes.    For example,  the mass at time zero for quadri- 

lateral (D is calculated as follows: 

(T      " 
)        [„   U   4-  „   U   +   w   U   1   A   U   +    (v   U   +  * (a) M (D 3Vv% 

y2   +y3   +y4/"a    'VI    ■   '2    '   '4 
0 ^ A o ^  /    0  ,      0  ,      0 A     +  ly,    + y,   + y K° (D 

masses M^ »  H^»  and M/T) are calculated similarly. 

(b) / 

= area of Aa;   A,   - area of Ab: 

\n       1 f     n /     n        n\ ,      n/n n\  ,       n /    n n\ 
J®   =2-[X2    Vy3   -y4j+X3   Vy4    -y2; + X4   ^2    " y3 / 

K\n       lrnAn n\ ,       n/'n n\ n/n n\ 

Conservation of mass 

0N 

V 
n 1 

M tD 
n n 

y2 +y3 +y4 

n \  .  n     /     n,      n,      n\.n 
Aa   +'y'    + y?    +y"    lA 

© 

v<5 = (p%n) CD- 
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3.     Equations of motion 

The equations are centered at 

point j,k;  see figure for notation. 

I = j,k -  1 

II = j +  l,k 

III = j,k+  1 

IV = j -   1,   k. 

y 

iv >*■ 

0 

© 

j-i 

in 

G> 

® 

-k+l 

i'— k 

k-1 

j+l 

-^- X 

.  .     -n+l/2      .n-l/2     Atn 

(a)   x. ,    '    - x. .  
j,k J»k z<£ 

rJ»k 
xx 

n 

(D ii   'in 
n n   \  + is      \n   I n 

xx 
n 

% ~ yiv 

+ 

Ixy/@rm 

S
»£ (y™ " yin) + K*£ (y^ " yn) " (Txy)® (xn " xm) 

" *Tv) " (Txy); flV " Xin) - (Txy); («I* " *n) + Atn(a).\. 

(b)    y 
n+l/2       ■ n-l/2   ,     Atn 

■ i       - y- i       +   i,k ' i,k ^ ,n 2f. 
j.k 

2 
yy. ® 

n/xn - xn  1 + (s      )n fxn    - xn xn   xin] +ryyL rni   xiv 
\ n /   n 

\n /   n 
1 I -v x,.-r - xT      +   D.„   1"   |x.,T"  - x.;.. 

n   Ln  _ v
n\ _ / n   /   n n 

Txy "  ym ' y"vj - (V 

(c)    + n 
j.k      4 

'p°An 

.vn  . 

, / 0     n \ 

/©   \~v"~/<2>" 

1    0   A11 p   A 

V 
n 

I  0  . n 
p   A 

n /©   \v"   /© 

a 
j.k      4 

ßn    =i HJ,k     4 

T 
xy \ M 

A 
n 

+ 
xy (4rl + 

©   L 
T      f— 

xy \M © 
T 

xy & @| 

1   yy        00/V M 

n 

© 
+ ,n ,n 

yy 6Q  \M 
+ Syy " S09/1"M 

n 

,Syy " S
00J(M 
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...      n+1        n .n+l/2      n+l/2 
(d) Xj,k  =Xjsk + Xj,k      At 

n+1        n      ,   .n+l/2 A.n+l/2 

(e) Calculate vJJj1"1 from Eq.   (2) (conservation of mass). 

(f) Calculate q/f)        from tne equation of state section. 

4.     Equation of state 

(A)   Strains 

An+l/2       1 /&n+l        .n\ A(D = 2 iA0     + Ad)/ * 
...    ,.      .n+l/2 _   (dk. 
(1) <->®    " H© 

n+l/2 

■4: 

\      a 

b     \ 

J 

1 2 

.X 

n+l/2   ÜX2 " X4)(y3 " yl} - (y2 " *4)(i3 " *!>] 
n+l/2 

© 

''»v;"!'(C"'=™'' y? - yJK - xi> - (x? - x4)(y3" ypl 
n+l/2 

(iii)    (iee) 
n+l/2 = /y_N 

vYy 

n+l/2 

(D 
rrjr   -   (e +6        ) 
V xx       yy J® 

,. ,  ,.   ,n+i/2_ /aj + ax\n+l/2 

(1V) v0   -$ + *f)0 

2A 
^ |y2 - y4)(y3 - yj) - (y2 - y4

)(h ' V] n+ 
■CD 

(v)      Ae 
,n+l/2       i    \ n+l/2 A^n+l/2 

=     £ xx/Q XXI 

r v x /• •    ^l\ n+l/2 [(x2  -x4)(x3 -xj)  -  (x2  -x4)(x3  -xjj 
,1+1 / 

At 
<D 
n+l/2 Atn+l/2 

V yV®      ly7 © 

/        \n+l/2=    /.     \n+l/2Atn+l/2 

V x7®      vxyy® 
/AVNn+l/2      W   n+l/2 _ VQ

1
   -V® 

v~y® =vi     "^FT7r~ 
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where 
n+l/2 _  1  /vn+l      „n^ 

(B)   Stresses 

1.     Elastic 

(i)     (a     )n+l =   /s     \n+2»i 

(ii)     (s     )n+i  =   (s    W2|x 

(m) (S0e)®1= W®+2H 

Ae n+l/2      1  /AY 
,n+l/2 

3 I V +     6 
n 

<D    V 7® 

Ae 
n+l/2     1 (AV 

YY 3     V 

Ae 
n+1/2    1 /AV' 
ee      " 3 I v 

n+l/2^ 
(iv)     (T     )n+I  =   (T     )n+ Fi[A6",i/")     +   (6 

n+l/2] 

,n+l/2 

n 

n 

Q
+
 VVo 

© 

See Section 6 for the calculation of 8      ,6      ,   and 8      .     After the 
,n+l 

xx       yy XY 
stresses at time t are calculated,  the yield calculations are made (see 

Section 7). 

2.     Hydrodynamic 

^n+1 
P£+1=AV->    +BV«+>    .    ,0 

,n+l E ^    is calculated from the total internal energy equation,  Section 5. 

3.     Artificial viscosity 

(1)    quadratic q:    q^=-s 

2   0    n+l/2 s 

S P   A (V 
"  n+l/2 '   I V 

V © 

C0
2 = 4. 

/•■x    T                               n+l/2     /"aC
LP (11)    linear q: q^ =l  

Calculate only for V/V < 0. 

%n+l/2 

V 
n+l/2 

V 
V 

'CD 
CT   = constant.      Calculate only for V/V < 0. 

a = sound speed. 
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r 

(^xx 
Y+i/2_i^py(A   ) 

V 
n+1/2 xx 

(iii) anisotropic q:   ( 
(>y), 

n+l/2 

® 

„     0/.n+1/2. ac
4py(A     ) 

V 
n+1/2 yy 

® ' 

® 

v. 
C .   = constant. 

A 

If these terms are used,  they are added to the appropriate stresses, 

i. e. ,   (s       + q     ) and (s       + q     ).     It is useful to have the q formulated in 
xx     V yy     ^yy 

this way for problems where a shock is travelling perpendicular to a free 

surface.     However, for the average problem the quadratic q gives very 

satisfactory results and it is this q that is expressed in the equations written 

here. 

4. 

(i) 

(Ü) 

(iii) 

Total stresses 
n+1 
a> ~ XX 

yyj 

Jee 

xx 
n+1 
0 

[pn+l + n+l/2 

n+1 
<D 

n+1 
® 

n+: n+1/2 1    \-p+1 
s     /T\ -  p     f 1 yyj Q) L 

„n+1   ,     n+l/2 
P + q 

99 
n+1 
® 

®- 

®- 

®' 

5. 

(i) 

E 
n+1 
® 

Energy equations 

total internal: 

A(Vn+1) + Pn ^    n+l/2 —i 5  + q (Vn+1   - Vn) + AZn+l/2 

(ii)    anisotropic: 

1+B(Vn+1)(vn+l_vn) 

„n+1  _     n ,n+l/2 
Z®    "  Z ®+  V® 

® 

's      e       + s      e xx xx yy yy 

+ S99€99 + T xy XyJ   ® 
n+l/2 

AZn+l/2 =  zn+l zn   sn+l/2 1 ,   n+1   ,     n, -j(s + s   ),  etc. 

n+l/2 
6.     Correction for rotation of stresses during a time step At 

If a mass  element has  rotated in the x-y plane by angle 00 

during the time interval Atn    '     = tn       - tn, the stresses must be recalculated so 

that they will be referred to the x-y coordinate system in their new position. 
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The following transformation equations can be obtained from Ref.   2, 

14: 

rqi      = s
n    cos     u) + sn    sin    OJ + 2Tn    sin w cos OJ 

xx        xx yy xy 

<i> 
1     = sn    sin2 w + sn    cos    w - 2Tn    sin GO cos OJ 
yy xx yy xy 

2 .   2 
V     xy xy 

= Tn     [cos     co -  sin    u|  -  Is"    -  s" 1 cos u sin 
xy L J     L xx      yyj 

The angle w is given by: 

Vx(xi -yj)=^-^jk-2 

CO   . 

sin OJ 

(Ü) 

sin co = 
Atn+l/Z /8y      3x 

2 Ux " 9y 

Equations  (i) can be rewritten as: 
n    +    n n     _  gn 

Sxx      SYJL + Sxx "  JOL cos 2cu + Tn    sin 2OJ 
2 2 xy 

(iii) 

xx 

yy 

n     .     n 
s       + s 
xx        yy 

n n 
s        - s 
■ xx „    yy cos 2oo - Tn    sin 2OJ 

2 xy 

v 

n n 
s       - s 

T*     = T"    cos 2OJ —  0    
yy- sin 2GJ 

xy xy ^ 
..n 

In the incremental stress-strain relations: 

n+l n ,.wn+l/2 
(iv) s = s       + Z(JL 

XX XX 

1 AV 
XX 3    V 

,   etc. 

the stresses  s^,   sn   ,  and T"    must be replaced by s^,  s^y3  and T^y. 

order to preserve the form of Eq.   (iv),  it is  convenient to introduce an 

additive term,   6,  to the stresses  such that 
.   AAr n+l/2 

n+l n     ,   _ n   A" s = s       + 2u. 
xx xx 

1 AV 
"xx      3    V 

+  5      ,   etc. 
xx 

r 

(v) 

cn , n 
6       = s1      -  s 
xx        xx        xx 

6       = s'      -  s       =  1   o 
yy      yy      yy x 

n n \ 
s        -  s     \ 
xx        yy -,n 

(cos  2OJ -   1) + T       sin 2w 1 xy 

.n 
xy 

T1     - Tn    = Tn    (cos 2OJ -  1) 
xy xy xy 

n n 
fs       - s 

xx        yy sin 2co 

•     ,    ~,     • -(*±     3x\A.n+l/2 sm 2w«2sinu-   ^- g--1 At 

In 
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Yield calculations 

(a)    Principal stresses (Ref.   5,  p.   94) 
n+1   ,     n+1 

j.1       s + s l ... n+1 xx vv     ,   1 
(i) Sj        =  

(ii) 

yy  + 1 
2 2 :(■ 

n+1        n+ s - s xx yy 
j + ^tfl 1/2 

n-rl n+1 
,,      s         + s , n+1 _    xx          yy l_ 

'2       ~             2 "2 
/n+1        n+1 Is - s Vxx yy J + k<YJ] 

1/2 

,.... n+1 n+1 (m) s3       - see     . 

(In the plane x-y and cylindrical coordinate systems used here s0„ is already 

a principal stress. ) 

(b)    Von Mis es yield condition 

calculate 
;n+l>2 _L /In+lV _L /In+lVl (i) 2J 

n+1 

V XX 

(ii) 

JI+1 

2J 
n+1 0,2 

2/3 (TV = K r
n+l 

KK""  >0 then multiply each of the stresses s   '    ,  s    ' ' ,  s   Q   ,  and T by 

^2/3 Y    //2Jn+   .    If Kn       < 0 use the stresses as they are for the next 

time step. 

8.     Boundary conditions 

(a)    Fixed boundary on the x axis 

Phantom zones are created by a mirror reflection across the 

boundary as  shown in the figure. 

y 

IV 
O (D 

hk. II 

(D  !d> 

x 

Reflected zones 
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The point j, k can now be accelerated with the equation of motion for 

a general point [Eqs.   (3)] subject to the following conditions: 

= 0 

(i) 

v 
Mo=M© 

The above procedure gives the desired acceleration along the boundary, 

but is has the undesirable feature of not allowing for the situation when the 

point j,k is on a free surface since the point has the extra mass of the 

reflected zones associated with it.     It is more convenient to have the correct 

mass associated with each point,  determined once and for all when the 

problem grid is generated,  and use different,  acceleration routines for the 

case when the boundary is fixed-     Therefore,   referring to the figure above, 

we will calculate 4> •   •.   as: 

(ii) (£j$ JIJ? 
rn vn /(D   \ v* 

The acceleration equation for point j,k that gives the same results as 

the equations of motion for a general point with conditions (i) becomes: 

(iii) (dx/dt) 
1 

j.k 
TJ»k 

yii - ^III \xxAi)     ^ xx/ 

?xy)© Lxn " smJ ' Vxy)© pn " xivjj 
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(b)   Fixed boundary on the y axis 

IV t-  B*®. 

in 

G) 

r 
xj,k = 0 

2yy© 

\yy 

,n 

yy  © 
_n 

yyj © 

<»<    (&). .= to 
_n 

@~ reel © 
-,n 
xy ©■ 

xy)(D: 

M^ = M 

'T 
n 
xy   © 

-    T ,n 
xy   © 

©=1Vi® 
v M, M 

II 

x 

Similar to paragraph (a) above,  the effect of a reflection about the y 

axis,   subject to the conditions (i),  is obtained using the following equations 

for the acceleration of point j,k: 

4> 
n 

J.k 
(^AVV^+^AVV

11
)^] 

(il) { P?.k = ij[(-yny "  O ^H ©+   fey -  O <ABH 4 • 
(iii)        [dy/dt] j)k ,  l/^.JC^-C^] [4 - *m] - (Txy)©^II " % 'III 

(S^-4^- 
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(c)    Corner zone on the x axis 

IV 
@ 

Free surface 

0   ; 
L I. 

II 
.X 

Fixed boundary 

r 

Zxx©r   (Exx)(D= ° 

(i) 

,n 
Jxx 

,n 
xy 

=   s- 

T 

M 

xy)®=fr"^=° 

xy/© 

xyj(D: 

M 
V 

(ii) 

(iii) 

*j,k=4 
0   An/Trn An/VX 

© 

(dx/dt) 
j.k 2<j> jsk 

(i)© f m " y?v) - (Txy)©V 

(d)    Corner zone on the y axis 

n n 
XIII " XIV 

IVl T 
l 

III * 

Free surface 

II 

x 
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r i. . = o 

^yyW rW<§> 

<i>< 

,n 

Vy 
n 

n 

'yy/CD 

'eej®~ pee)® 

= o 

n 
= te 

n 

xyj(3)= "   (Txyj 

xyj@=  ^xyj© 

■©  ' 

r" 
4> 

n 

(üW 
j.k 

,n 
P    k 

(iii) (dy/dt) 
n^ 

*IlJ 
T n 
xyi4 y-i 

n 
+ ß 

n 
j>k 

(e)    Free surfaces 

For a free surface at j,k in the figure below,  all quantities associated 

with the phantom zones (1) and (4) are taken as zero.     The equations of 

motion for a general point can then be used,   except that a.^ and ß^ k are 

calculated as shown below. 

IV 

® 

(3) 

III ^Free surface 

ii G) 
j>k 

® 

x 
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-I [fey (An/M)]0+ K f /M)J 
n 1   f 

Qj,k = 2 

ßn      =1 Pj,k      2 y
n
y-2e>n/M) 

+ ^ - seel <A"VM) .1. 
J 

For a corner free surface,  the phantom zones in the figures are zones 

(1),   (2),  and (4). Free surface 

y -=^—i *J>k 

Free surface 

x 

n a.  . 
J'k ^xy^j, 
J>k 

,n 
Vy 

:ee 7M 

9-     Sliding interfaces 

"When two materials slide on one another,  a decoupling of grid points on 

the interface must be provided,  otherwise large grid deformations will result. 

If all of the forces on the interface are taken into account,  the equations of 

motion become excessively complicated.     For a large class of problems a 

simple decoupling of the grid points gives very satisfactory results.     The 

method adapted here considers one surface to be a fixed boundary during a 

given time step At.     The equations of motion for the sliding material are the 

same as those given for motion along a fixed boundary.     The fixed boundary 

is then advanced in time using the force field of the sliding material next to 

it.     The new position of the fixed boundary provides a new boundary for the 

sliding material.     The important point in this type of calculation is that the 

parameters on the interface of the sliding material be associated only with 

the sliding material and that the material providing the fixed boundary be 

treated as though the boundary were an exterior surface with pressure forces 

acting on it. 
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The point is that no forces should be defined at the sliding interface by 

an averaging process that uses information from either side of the interface. 

Gn        (V]>n 

-fc* x 

Referring to the figure above: 
,n 

(I)    Point f is advanced along (k  )     as though (k  )    were a fixed 
s s 

surface.     The mass of point f is associated with the mass of the 

material below k   . s 
(Z)    Points a,  b,   etc. ,   on (k  )     are advanced from time (n) to time 

(n +  1). 

These points are associated with the mass of the grid above k  . 

The line (k )    is considered a grid boundary for the material above 

and accelerated by forces from the grid below. 

(3) Points on (ks   -  1)    are advanced in the usual manner. 

(4) The point f if found from the line through P and point *f. 
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Calculations for a sliding interface 
k = slide line 

k 
y 

k-1 

x 

(a)   To calculate the volumes   of k -  1/2  mass points 

1.     Given the point  P   on k -   1   and the slope,   m   ,   of a line through P; 

we want to find the points   a   and  b   on  k  that lie to either side of this line 

(see figure ).     Once these points are found,   the intersection  f  of a line 

through points a, b,   and the line through  P can be determined» 

For each point j,k calculate" 

(tan 0). ,   =  (m    - m, . )/ (1 + m    •   m. , ) 
J.k p j,k7 p j,k' 

where: 

m. ,   = (y. ,    - y   )/(x. ,    - x   ) j,k      x/j,k      'p'/      j,k        p' 

(x   , y   )   and  m     are given., 
p     P P 

(i) If m 
P 

> 104,     (tan 0)        = 
J»k 

(ii) If m. , 
J>k 

>   104,   (tan 0). 

(iii) If m 
P 

>   104   and m. . 
J>k 

> 10   ,   (tan 0)        = 0. 
J'k 



■B-15- UCRL-7322 

Test the consecutive values of (tan 0).   ,   until a change in sign is found. 
J. K 

The points (x.  . ,  y.  . ) and (x     .   , ,  y.    .   , ) where this occurs will be the 
JjK Jj K J+1,K        Ji-i,K 

points (x   ,  y   ) and (x,,  yu).   (This method fails if |0| >  90°.    However,   in 
a      a D      D 

practice information on neighboring points is carried from cycle to cycle and 

these points are tested first.    If these fail,  points adjoining on either side are 

alternately tested.    For the original search,   the whole  k line is tested for a 

change in sign of arctan 0.) 

2. To find the coordinates of point  f  on line ab: 

xr=(y    _y    +m    - m ,   x   )/(m    - m     ) f       'a      'p p ab    a'/       p ab' 

*f =(mp [ya " mab (xa " Xp)] " mab Yp)/
{m*h ~ mp} 

mab = (ya " YbVK -Xbh 

3. Repeat steps  1 and 2 for point G on k -  1 

4. To calculate the volume enclosed by P,  f,  bs  f
1,  and G (see figure). 

k = slide line 
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2A: 

2A. 

Ai  = area of A 1,   etc. 

i j k 

x,   - x b       p yb -yP 
0 

xr - x f     p 
yf -yP 

0 

i j k 

X„ -   X 
f     p 

yf •- y
P 

0 

x.   - x 
b        p y

b-
y

P 
0 

(xb - xp)(yf" V - (yb - yp)(xf - V 

(xf- - x
P
)(yb - V - (yf - V{xb - v 

2A3 = XG" xp 

x,. - x f p 

V p+l/2      3 

yc - yp      ° 

y*i - y. f    7
P 

3VM/p+i p+l/2 

(xG-XP
)(yf " V" (yG"V(xf "V 

(y
P 

+ yf + yb)Al + (y
P 

+ yb + V A2 + (y
P 

+ yf + yG)A3 

5.     To calculate the coordinates of the center of a zone 

x 
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Xj+l/2,k-l/2 " 4 (xj,k-l + Xf,k + xf',k + Xj+l,k-l) 

yj+l/2.k-l/2 = 4 (yj,k-l + yf ,k + yf',k + yj+l.k-l> 

(Note:    This is not in general the center of a zone,  but is suitable for 

the use that is to be made of it.) 

(b)    To advance in time point  f  on the slide line  k 

h 

k = slide line 

k-1 

x 

G 
n 

(P + ^3^e-yjsk-l)+^P + Cl)4^8k-l-yg) 

(P + ^3(xe^X
j)k-l)+(P + ^4(xjsk-.l-Xe) 

n 
cos ab 

n 
° sin ab. 

sin ab 
Yu - y= 

Ab- x
a>2 + <yb - yf 

n 

cos ab 

t 
5L. 

(xb - x
a>2 + K - yf 

n 
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2. 
.n+1/2       .n-l/2   .   At     ,„ ,>n 
xr     '     - x.      ' ,  +   (Gr ' cos ab) 

f j,k-l       24>n       f — 

.n+l/2       .n-l/2      Atn   .„ ,,n 
^     =yj,k-i -7^ {Gf' cos^} 

24>f 

4>. 
n       1 M + /^ 

\ V 
n 

V 
n 

Here A^is the area of zone  (2)  at time n,   etc. 

Note:    The point f at time n-l/2 has been given the velocity of point 

(j,k-l),  also no account is taken of the fact that f may move to 

a new line segment during a time step. 

n+1 n  ,   . n+l/2  A .n+l/2 
3. xf       = x-  + xf      'At 

n+1 n  ,   . n+l/2  Ain+l/2 
yf     = yf + yf    'At . 

(c)  To advance in time the point j,k on slide line k 

y 

Xr 

k+1 

k = slide line 

x 

X - center of a zone (see a-5) 
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I.    Given the point 2 in the above figure and the slope m2   of a line 

through point 2  and   1   to the face  ab.    We want to find the points  r  and  s 

on k -  l/2 that lie to both sides of this line. 

For each point (j + l/2),   (k -  l/2) calculate: 

(tan 9)
j+l/2,k-l/2 = (-2 " "Wz.k-l/Z»/*1 + m2 -mj+l/2,k-l/2) 

*j+l/2,.k~l/2 = {yj+l/2,k-l/2 " Y2)/^^\/Z,^-\/2 ~ yj 

m2 = " (xa " Xb)/(ya " V 

m. 

(i)        If m.. 
j+l/2,k-l/2     > 10   '     (tan 0)j+l/2,k-l/2 = -]/m2 

(ii)        If m. > 104,     (««9)j+l/2,k.l/2=-l/m.+ l/2ik.l/2 

(iii)        If m. > 10      and m. 
j+l/2,k-l/2 > 10r,     (tan 6). 

j+l/25k-l/2 

Test consecutive values of   (tan 0) j+1/2,k-l/2   until a change in sign is 

found.    The points    (XJ_ l/2, k_ 2/2,   Yj. l/2, k_ 2'/2)   and  (xj+1/2j k_l/2 , 

yj+l/2,k-l/2>   wil1 be the P°ints  (xr,   yr)   and   (xs,  ys)    (see details in Part I). 

2.    Calculate the point of intersection   (xds   yd)   of the line through 

Point 2 and the line through points   (xr,  y  )   and  (x      y  ). 

x^ =    (m. d        '"'xs"r      *"2"2  '   '2 
m x    + y - yxV(™ rs 

"s'    'S' 

m_) 

Yr 
={m2[yr- m       (x    - x_) 

rs l  r 2 m 
rs^2  /(m2 " mrs} 

m        =     (y     -  y   )/(x     -  x   ) 
rs        1Jr      's'/v   r s' 

If m 
rs < 10"   ,and m- > 10   ,   x    = x     and y    = y 

3o    Calculate the pressure at point   d 

P    = P 
d r d -  s + P — I/I r - s 

d- s = 7 (xd  -  xs)     +   (yd  -  yg)        ,    etc. 
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4. Repeat 1 through 3 to get P 

5. Advance point (j,k) 

,n/ n n 

.n+l/2       .n-l/2   ,    Atn 

J'k J'k 2<b* 
J>k 

pTK+i,k - yj,k+i)+ ^Kk+i - yj.i.kj 

+ PdK" 1 ,k " yjn,k) + Pe& - Vl ,k)      j 

n+l/2      -n-l/2      At"       J 
'j.k 'j»k 

J>k 

^Pnxn - xn l + Pnxn - xn 

^lfj+l.k     xj,k+l/ + *2lXj,k+l      Xj-l,k, 

n ,   Dn/ n n + P    x.  ,   - x. 
v   dlXj-l ,k " Xj,k/  '  "eH.k     Äj+1 ,k, 

>. 

(d) The rest of the grid is advanced with the normal equations.     The 

slope m    of Section I is found from (xf ,yf) of Section II and the advanced 

position of point P.     We are now ready to repeat steps (a) through (b).     The 

original slope m    is obtained by bisecting the angle made by point P and its 

neighboring points on line (k    -   1). 

(e) Discussion: 

From the above procedure it is seen that the sliding material is made 

to follow the motion of the slide line boundary.    An error in time and position 

is introduced since,   even though mass is conserved,   one-half the mass of 

the sliding material is not used in the calculation of the acceleration in the 

direction of the boundary motion.     This  error is  reduced when the sliding 

material has a smaller density than the material associated with the boundary 

or when small grid zones are used.     For reasonable zoning,  the error only 

shows up after large displacements have taken place.     The error can be 

effectively remedied by increasing the mass in the boundary material to 

compensate for the one-half mass in the sliding material that has been 

neglected in the acceleration equations. 
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10.     High-explosive burn options 

The chemical energy to be released through the hydrodynamic equation 

of state is stored in each high-explosive zone as an initial energy E   .     The 

time for the detonation front to reach a specific zone is calculated in advance 

from the known detonation velocity,  Ds  and the distance from the point of 

detonation to the center of the zone.     This quantity is also stored with each 

zone.    A Burn fraction,  Fs  is calculated so as to spread the burn front over 

several zones analogous to the artificial viscosity "q" that spreads a shock 

over several zones.    The burn fraction is integrated with the energy equation 

and the explicit form shown in Section 5 for calculating the energy cannot be 

used.    Instead, the energy must be calculated by an iteration procedure. 

The procedure given below can also be used to replace the calculation shown 

in Section 5 when a more complicated equations of state is  required. 

For one-dimensional calculations the burn fraction can be defined as 

F - (1-V)/(V~T)  (Ref.    11) and the burn calculation is started by setting 

F =  1 in the zone that corresponds to the point of detonation.     The burn 

calculation will proceed to around three or four times the number of zones 

that the artificial viscosity "q" is  spread over before the detonation front is 

correctly established.     For one-dimensional calculations this amounts to 

about 16 zones.     In two-dimensional calculations where there is a limit to 

the number of zones for a practical problem,  it is usually necessary to have 

the correct detonation velocity established in a fewer number of zones.     A 

convenient way to do this is to start the burn calculation at the time the 

detonation would reach a given zone as described above.     To allow for the 

possibility of an overdriven detonation that may arise during the calculation 

and result in a higher than normal detonation velocity,  the burn fraction 

F = (1 -V)/(1-V„T) can be used in addition to the burn fraction that is based 

on the known detonation velocity.     The larger of the two is then selected for 

the calculation. 
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(i) Burn fraction = F.        = (t tb)/AL 

For t < t. F^+1  = 0 

Fn+1  ={I_vn+l)/(1Vcj) 

^n+1 . , -c,n+1        , Trn+1 F = maximum of F.       and Jb _ 

T, „n+1  .  .       ,  •c,n+1       , If F > ]  set F =1 

AL = rAx/D 

t       = actual time 

t,      = time for a zone to 
start burning 

Ax  = grid spacing 

D     = detonation velocity 

r      = constant ~ 2.5 

y^T= Chapman-Jouguet 
relative volume 

(ii) 

(iii) 

E 
n+1 

E 
n      (pn+qn+l/2} (V 

n+1 n. 
V"). 

;n+l P(En+1,Vn+1) ■   Fn+1 

here P(E,V) is the equation of state of the burned explosive. 

(iv) 

(v) 

E 
n+1 

E 
n+1 l/2(Pn+1 n. 

Pn+1  = P(En+1,Vn+1) 

-  P 

.n+1 

(V 
n+1 

V 
n. 

1 1.     Stability 

The At calculation is the same as that given for the one-dimensional 

problem in Appendix A.     The characteristic zone thickness is taken to be the 

zone area divided by the longest diagonal. 

12.     Plane geometry 

For plane geometry in x-y space,  the mass calculation corresponding 

to Eq.   (la) at the beginning of the appendix becomes: 

M ® pJ/v0(A; + Ab"). 

o=(p°/Ma>)- { A
n+ A" a b, 

The conservation of mass Eq.   (2) becomes: 

In the equations of motion [Eq.   (3)]  the terms a and ß   are set to zero. 

The quantity c|>.  ,   is  seen to be a constant and is calculated only once for each 
j »k 

point jsk.     The logic for the value of cj>.  ,   at grid boundaries is the same as 

for the cylindrical case where [p„(A,   + A, )/V  ] rr\= M-(T\ >  etc- 

The term e       in the equation of state section is set to 
ÜÜ 

zero. 
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